
ASICs and FPGAs have become massively complex, particu-
larly for System-on-Chip (SoC) designs involving multiple cores. 
With this complexity comes longer and more tedious debug 
and validation cycles. Unfortunately, when something fails or 
goes wrong, gaining access to test points in highly integrated 
designs is next to impossible. Unless you want to spend weeks 
shooting in the dark at random errors while running through 
multiple prototypes, on-chip instrumentation is no longer 
optional; it’s a critical must-have. Figure 1 shows an overview 
of the debug process using on-chip instrumentation.

While there are a number of ways to add instrumentation to 
FPGAs, a distributed approach using an instrument network is 
emerging as the preferred method, as it maximizes the number 
of potential observation points while minimizing silicon area or 
look-up table utilization requirements. Also critical to efficient 
debug is deep trace capture to see how the various parts of a 
system interact over time. Finally, designers must be able to 
observe the interactions of multiple devices and clock domains, 
both on- and off-chip, all fully time correlated for a true system-
level perspective.

Taken together, innovations including flexible and complete 
access to observation points, deep trace captures, and system-
level views have the potential to change the game for FPGA 
and ASIC debug from long and arduous to fast and efficient.

Debug challenges
Before reviewing different approaches to implementing 
embedded instrumentation, it’s helpful to understand why instru-
mentation is necessary in the first place. The biggest reason is 
simply the ever-growing functionality in each system.

Whereas in the past there were plenty of probe points (external 
I/O on the devices) to choose from, it’s no longer possible to 
observe what’s going on since in most cases the key interfaces 
are now inside devices. Current-generation FPGAs have 100x 
the number of functions running in parallel compared to five 
years ago, yet the number of external outputs has stayed the 
same. From the perspective of a developer attempting to 
debug unexpected behavior, modern chips are nothing more 
than a big black box. 

As if that weren’t enough, while the power of simulators con-
tinues to improve in a linear fashion, every increase in parallel 
functionality adds an exponential increase in potential combi-
nations. Since simulations run on one combination at a time, it’s 
not possible to cover all the functionality in  pre-silicon simula-
tion runs.

This inability to adequately simulate all the possible permuta-
tions in pre-silicon has led to FPGA-based prototyping before 
design completion. Particularly at the prototype level, access to 

Modern ASICs and FPGAs are tedious and time-consuming to verify and validate. Adding 
small, highly efficient on-chip capture infrastructure to the design makes this job much easier 
by providing 10x the visibility of instrumentation points for a given area. In addition, by using 
compression algorithms, logic analysis capture stations can capture data for 10x or more 
capture depth.

FPGA and ASIC debug made  
easy with on-chip instrumentation  
and logic analysis
By Brad Quinton

ELECTRONICALLY REPRINTED FROM JUNE 5, 2012

S
o

ft
w

a
re

 | 
El

ec
tr

on
ic

 d
es

ig
n 

au
to

m
at

io
n



observation points is extremely helpful in debugging functional 
issues quickly and efficiently.

Another debug challenge is the emergence of embedded 
software on silicon. More and more FPGA and ASIC designs 
include one or more processor cores. Such systems can include 
a complex mix of software, firmware, embedded processors, 
GPUs, memory controllers, and other high-speed peripherals. 
This increased functional integration combined with faster 
internal clock speeds and complex, high-speed I/O is making it 
harder than ever for developers to deliver a functional and fully 
validated system.

On-chip signal capture
Back when systems involved multiple chips and components 
it was easy to move logic analyzer probes around to look at 
different signal combinations. Even with the move to on-chip 
instruments, the need to flexibly move virtual logic analyzer 
probes to different signal points remains a constant. Since the 
designer can’t anticipate every variable or potential application 
for a given chip, the more signal capture points available, the 
better.

A traditional ASIC approach uses a mux network with shared 
select signals (one per mux level) and provides n/m different 
signal combinations, where n is the number of probe points 
and m is the number of signals viewed concurrently (debug 
bus width). This is the most restrictive but simplest option, as 
it leverages simple multiplexers. To be effective, this approach 
requires significant up-front time to create groups of signals 
that correspond to every possible debug scenario, and once 
the capture points are in play, designers can only look at signals 
that are in the same group. This process is demanding, time-
consuming, and highly unlikely to capture all debug scenarios.

The other extreme is to create a full crossbar mux that gives 
complete signal flexibility, which requires m muxes of n:1 in 
size. This can get expensive relative to area very fast, making 
this approach impractical for all but the smallest cases.

The middle ground is to either increase the number of select 
signals inside the mux structure or create a number of dupli-
cate groups with different signal ordering. The shared select 
mux and the mux with additional select signals are both imple-
mented in many homegrown approaches. While shared select 
mux schemes can handle common and expected debug sce-
narios, they still fall short of the ideal complete coverage. Thus, 
they are ill-suited for unexpected problems and can often lead 
to inefficient implementations, as signals are repeatedly con-
nected to multiple multiplexers.

It is possible to find a more elegant and efficient solution by 
leveraging multistage, unordered networks, often called con-
centrator networks. This new approach effectively creates an 
observation network and is becoming commercially available. 

Using a unique network architecture and complementary 
routing algorithms, an observation network provides the signal 
flexibility of a full crossbar mux while in most cases requiring 
no more die area than shared simple muxes. Table 1 shows 
a comparison of signal visibility calculated using the different 
approaches.

With an observation network, designers use automated tools 
to implement on-chip signal capture probes in the Register 
Transfer Language (RTL). At the design stage, there is no need 
to worry about different signal combinations or ordering since 
every combination will be available. The result is an observa-
tion network that grows linearly with the number of signals. 
This approach moves the complexity of determining routing 
off the silicon and into software. While producing a signifi-
cant  area/ performance improvement, an observation network 
requires sophisticated algorithms to determine routing, making 
it difficult to use without commercial software to control signal 
selection.

How significant an advantage does the network approach offer 
over a simple mux in terms of observation point visibility? Take 
this example, where 256 signals are probed (n) with 32 signals 
visible concurrently (m):

 › Simple mux: Number of signal combinations (visibility) = 
256/32 = 8

 › Observation network: Number of signal combinations 
(visibility) = 2^256 = 1.2 x 10^77

Figure 1 | The instrumentation and debug cycle is critical to 
detect errors in FPGA prototypes.

 Your 
RTL 

Partitioning 
Insert Probes 
Certus 
Implementor  

Synthesis 
Place & Route 

FPGA Prototyping Platform 

Debug  
Certus Analyzer 

FPGA Vendor Tools 
Design 

Lab 

Debug 
Cycle 

Lab Bench PC (Windows, Linux) 

Workstation PC (Linux) 

File Interchange (.VFE) FPGA Bitfile(s) 

Signal capture approach Signal visibility

Shared select mux n/m

Enhanced mux 2^(m*log(n/m)/log2)

Full crossbar 2^n

Observation network 2^n

Table 1 | An observation network provides the same level of 
signal visibility as muxes while requiring similar or less die area.

Software | Electronic design automation       



The difference is 76 orders of magnitude. While the first 
approach is highly restrictive, the observation network 
approach provides any possible combination of signals. For 
roughly the same cost, the observation network provides a 
huge advantage with its increased flexibility.

Maximizing capture depth 
For debug challenges that span hardware and software, the 
ability to capture long traces is critical to track down prob-
lems that show up over thousands or millions of clock cycles.  
Post-silicon and on FPGAs, deep capture is vital to see how 
the overall system works, as many of the bugs that escape 
verification take a long time to emerge. Furthermore, most  
software-driven functionality spans hundreds of thousands to 
millions of clock cycles.

Traditional instrumentation approaches capture the  information 
as it is received from the observation probe using one entry 
in the internal RAM for each clock cycle of data captured. 
With this approach it is difficult or impossible to capture more 
than a few thousand clock cycles at a time without putting an  
unacceptable strain on internal memory resources. For that 
reason, compression techniques are now starting to be used to 
boost capture depth.

However, most well-known compression algorithms are poorly 
suited to trace compression, having been developed for visual 
media and communications applications. Specialized trace 
compression layers that use multiple compression techniques 
together, each specifically tailored to common trace data 
 patterns, are now commercially available. For most real-life 
applications this provides 10-1,000x more depth with no loss 
in resolution.

Efficient system-wide debug
The last piece of the puzzle to more efficient FPGA and ASIC 
debug is a time-correlated, system-wide view that spans 
multiple clock domains running in parallel. When problems 
require correlation across multiple instrumented areas, the 
designer is looking at a time-consuming process of obtaining 
individual traces and then correlating events manually. For 
instance, an average ASIC prototype on an FPGA-based pro-
totyping platform consists of two to three clock domains per 
FPGA across four to eight FPGAs. This means the designer 
will need to debug anywhere from eight to 24 clock domains 
individually. Tracing each of these 24 domains one at a time 
and manually piecing together the results is time-consuming 
and error-prone.

A much more efficient approach is to use logic analyzer software 
to produce a time-correlated view from independent instru-
ments operating in multiple clock domains and across multiple 
devices, as shown in Figure 2. Specialized debug software can 
collect data from each instrumented area of the chip, reverse 
the compression algorithms, and then align the captured data 
to produce a system-wide, time-correlated view. This leads to a 

single trace capture and debug scenario, both saving time and 
providing simultaneous hardware debug of many functional 
units and clock domains. This process often reveals emergent 
system behaviors that were never considered when the device 
was architected.

Innovations handle the unexpected
With increasing complexity and limited access to probe points, 
ASIC and FPGA validation and debug has become tedious and 
time-consuming. As more and more functionality is integrated 
into each chip, physical access to probe points has become 
impossible. The challenge then is to incorporate enough on-
chip observation points to not only handle expected debug 
scenarios, but unexpected ones as well.

A key innovation that enables faster and more efficient 
 validation and debug of even the most complex designs is an 
observation network. Compared to traditional shared select 
mux approaches for observing signals, the observation network 
delivers significantly more signal combinations with similar die 
area requirements.

Other innovations supporting more efficient debug  scenarios 
include the use of advanced compression algorithms to 
boost on-chip memory capture depth and the emergence 
of logic analyzer software that produces a time-correlated, 
system-wide view that spans multiple devices and off-chip 
instruments.      

 
Brad Quinton is the chief 
architect for the Tektronix Embedded 
Instrumentation Group.

Tektronix 
brad.quinton@tektronix.com
www.tektronix.com

Follow:       f         in       

Figure 2 | Time-correlated views speed system-level debug.

Access 
 lortnoC

Existing 
TAP 

Controller 
JTAG 

• Synchronized on-chip views 
• Embedded capture probes 

• Scalable, distributed infrastructure 
• Synchronized to its own clock domain 
• Full-speed signal capture 

• Secure Control & Access via JTAG 

Simple
Router

2 (optional) 

Subsystem  1 

Subsystem n 

Capture 
Station 

Sync 

FPGA 1 

  2  metsysbuS

10 

Posted with permission from June 5, 2012. Embedded Computing Design, Opensystems Media. Copyright 2012. All rights reserved.
For more information on the use of this content, contact Wright’s Media at 877-652-5295

91478

Software | Electronic design automation       

www.embedded-computing.com
www.wrightsmedia.com

